An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root

نویسندگان

  • Sabrina Sabatini
  • Dimitris Beis
  • Harald Wolkenfelt
  • Jane Murfett
  • Tom Guilfoyle
  • Jocelyn Malamy
  • Philip Benfey
  • Ottoline Leyser
  • Nicole Bechtold
  • Peter Weisbeek
  • Ben Scheres
چکیده

Root formation in plants involves the continuous interpretation of positional cues. Physiological studies have linked root formation to auxins. An auxin response element displays a maximum in the Arabidopsis root and we investigate its developmental significance. Auxin response mutants reduce the maximum or its perception, and interfere with distal root patterning. Polar auxin transport mutants affect its localization and distal pattern. Polar auxin transport inhibitors cause dramatic relocalization of the maximum, and associated changes in pattern and polarity. Auxin application and laser ablations correlate root pattern with a maximum adjacent to the vascular bundle. Our data indicate that an auxin maximum at a vascular boundary establishes a distal organizer in the root.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell Polarity Signaling in Arabidopsis Involves a BFA-Sensitive Auxin Influx Pathway

Coordination of cell and tissue polarity commonly involves directional signaling. In the Arabidopsis root epidermis, cell polarity is revealed by basal, root tip-oriented, hair outgrowth from hair-forming cells (trichoblasts). The plant hormone auxin displays polar movements and accumulates at maximum concentration in the root tip. The application of polar auxin transport inhibitors evokes chan...

متن کامل

A recovery principle provides insight into auxin pattern control in the Arabidopsis root

Regulated auxin patterning provides a key mechanism for controlling root growth and development. We have developed a data-driven mechanistic model using realistic root geometry and formulated a principle to theoretically investigate quantitative auxin pattern recovery following auxin transport perturbation. This principle reveals that auxin patterning is potentially controlled by multiple combi...

متن کامل

ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis.

ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patternin...

متن کامل

NO VEIN mediates auxin-dependent specification and patterning in the Arabidopsis embryo, shoot, and root.

Local efflux-dependent auxin gradients and maxima mediate organ and tissue development in plants. Auxin efflux is regulated by dynamic expression and subcellular localization of the PIN auxin-efflux proteins, which appears to be established not only through a self-organizing auxin-mediated polarization mechanism, but also through other means, such as cell fate determination and auxin-independen...

متن کامل

JAGGED Controls Arabidopsis Petal Growth and Shape by Interacting with a Divergent Polarity Field

A flowering plant generates many different organs such as leaves, petals, and stamens, each with a particular function and shape. These types of organ are thought to represent variations on a common underlying developmental program. However, it is unclear how this program is modulated under different selective constraints to generate the diversity of forms observed. Here we address this problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 99  شماره 

صفحات  -

تاریخ انتشار 1999